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Abstract 
 
A new methodology, in order to optimize production on a 
per-sand basis, was developed for the San Francisco 
field, Colombia. In the year 2009, a breakthrough 
methodology was been implemented in the San 
Francisco field, Colombia, to yield an additional 12% in 
remaining reserves by optimizing production and 
injection based on key principles of the ´learning theory´. 
However, the need for a more thorough optimization was 
evident. 
The San Francisco Upper Caballos formation produces 
from 8 different sand bodies, KCUA-KCUF. These sands 
differ petrophysically and in saturations. With over 15 
years of water injection, recent ILTs were proof that 
several sands had not experienced good waterflooding, 
mainly due to their less favorable petrophysical 
properties. A methodology to identify remaining 
saturations per sand, as well as design injection patterns 
that would remedy this will be presented. 
Historical decline of the San Francisco field was 
between 14-17%. For the years 2009-2011 decline has 
remained steady at 8.5%, a value previously unseen. 
Additional reserves are already evaluated at 0.6 MMbo 
as of 2011, from adjustments to injectors and producers. 
This paper will present this methodology and its viability 
in mature waterflooded fields. 
 
Introduction 
 
The San Francisco field was discovered in 1985. It is 
located 20 km northwest of the city of Neiva in the Upper 
Madgalena basin (Colombia), and produces at a depth 
of 3,000 ft. This north-to-south trending structure is 
controlled by a basement-rooted ramp-style thrust fault. 
San Francisco mainly produces from the Cretaceous 
Upper Caballos formation. There is also commercial 
production from the Lower Caballos formation and from 
overlying Villeta formation limestones. 

 
San Francisco field total cumulative oil production was of 
162.8 MMbbl and average production was 7,556 bopd in 
August of 2010. 
 
The field has a history of water injection with good 
success (ref. 1 & 2). Any tertiary recovery technique or 
alternative technology could not practically be applied, 
as this would have taken a long time to test and validate, 
which would defer financial return.  
Therefore, the best strategy for HOCOL was to amplify 
the effectiveness of the water injection project, using any 
possible leverage. This included horizontal and vertical 
injection-pattern fine-tuning. Additional investment has 
been considered: conversion of producers into injectors, 
surface treatment and/or improved injection facilities. But 
also, a reshuffling of the whole existing water-injection 
hardware had to be envisaged.  
 
After a first optimization project in the KCU formation, 
where the right balance between producers and injectors 
and appropriate injection rates was identified (2008, 
ref 3.), a further waterflood improvement was 
contemplated in selectively readjusting and amplifying 
the injection and production per layer. Because of the 
complexity of the geology and the past unstable 
production trends, a huge combination of possible 
development plans needed to be contemplated.  
 

 
Therefore, only a massive optimization process could 
properly tackle this challenge. This requires, first, a 
relevant understanding of the field mechanisms, and 
second, the use of an Optimization Engine. 
 
Global Methodology 
 
A  selective, optimized injection and production program 
(in limiting/stopping injection/production at certain 
depths) has been developed by:  
(i) Using log tests available and by carrying out a five-
month field test, in order to collect specific production 
data coming from selective injection and production, and 
improved oil-cut and/or liquid production; 
(ii) Reducing constraints related to surface equipment 
(water injection), in order to further boost oil production, 
through a massive optimization of the injection pattern. 
  
Deliverables of this project were: 

 
• A well-selective intervention pilot which allowed 

learning of reservoir behavior from well 
response to production/injection parameter 
changes at individual layers of the Upper 
Caballos (KCU) formation; 
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• Recommendation for further layer-selective 
injection and production jobs; 

• A learning process derived from past behavior of 
the whole field and from the pilot results, leading 
to a customized Production Simulator for field-
wide optimizations. 

• As a result of a massive optimization process, 
quantified and precise recommendations 
(injection/production rates) in order to optimize 
the injection scheme over the full field, with 
available facility capacity/limitations taken into 
account. 

 
Geological Layer Model 
 
Layer allocation is mainly based on log interpretation – 
wherever available. 
The layer allocation firstly used was based on 1994 data. 
In 1997 the layer allocation was reworked partially. Since 
this 1997 work was not completed, the set of data is not 
fully consistent. The reallocation job was resumed in 
2010 to complete and build a full set of data.  

 
The new allocation relies on a fluvial deposition model. 
The top marker for the E layer (KCUE) is found in every 
well. It corresponds to a Paleolithic fluvial topography 
(after tectonic) after which latter layers accumulated. The 
top marker for the A1 layer (KCUA1) is found in every 
well as well. The main job consisted of indentifying 
thicknesses and tops for layers A2 through C3 (KCUA2-
KCUC3). 

 
The topographic depositional map is presented below 
(Fig 1). Blue areas represent fluvial channels. After 
deposition was completed, tectonics created the 
anticline and fractures present today. 

 

 
Figure 1. Topographic despositional map (left) and the current structural 
map (faults/ blocks) (right). 

 
Layer tops were identified from well logs for most wells, 
with thicknesses being determined from these. In 

remaining wells, layer thicknesses were interpolated 
from surrounding wells and populated starting from the 
top. If the available space in thickness was not sufficient, 
the lower layers were discarded. 
Allocation of layers is also linked to vertical connectivity. 
Some wells do not present an inter layer marker. 
Interlayer bounding must be checked individually per 
well. A GR log – when available – is the main indicator of 
vertical connectivity. When a selective layer job is 
proposed, the GR log data is used to check for behind-
casing feasibility of selective layer stimulation and 
production. This guarantees the efficiency of such 
selective treatment in the given well.  
 
Identifying favorable layers 
 
The pilot phase aimed at identifying and stimulating 
layers having the best oil-increment potential. A 
statistical approach, based on uneven perforations of 
producers, was used to choose layers with the best oil 
cut at present. 
Production data was used as input. Monthly average 
flow is considered and calculated as the average daily 
fluid flow over the full production period. Targeted 
outputs are allocation of flow per layer for the given set 
of wells. Even with a limited set of wells in one given 
block, the quality of the result is supported by the 
number of equations – wells –, which is sufficiently 
greater than the number of unknowns – layers –. The 
variety of perforated layers per well is illustrated by the 
table below (Figure 2): 

 

Figure 2. Variability of perforated layers in KCU depending on the well. 

Flow distribution among the layers in a given well is 
dictated by the flow mechanism, and can be described 
by equations. In the first order, fluid allocation per layer 
is driven by perforation height and permeability. 
Local distortions of the driving parameters are averaged 
out over the set of wells. 
The main assumptions and limitations considered were: 
 

• Differential flowing pressure between reservoir 
and well. Differential pressure varies for each 
layer pressure and for each flowing well. 

• Permeability: Each layer has different rock 
properties and permeability to fluids; for a given 
layer, permeability varies over the field. 

• Local Skin effect (damage) varies from well to 
well and varies from layer to layer for the same 



SPE WVS017  3 

well. 
 

The purpose of this method is to identify properties that 
describe each layer. Local distortion effects are aimed to 
be averaged out. 
 
Pressures of the different layers are considered equal 
and constant in the first order for a given block. This 
assumption is supported by the Production Simulator 
results from a 2008 study (ref. 3) that was based on the 
same principle.  
 
In each well, the aim was to have the lowest bottom-hole 
flowing pressure possible – according to the activation 
method. In the first order the differential pressure is then 
considered constant over the full set of wells for a given 
block. 
Permeability is considered constant in each layer for a 
given block. Average permeability of each layer can be 
considered equal in the first order. Allocating different 
permeability values for each layer with values ranging 
from 1 to 4 gives same conclusion.  
Skin effect is not considered between layers in the same 
well. Major skin contrasts are present in wells with two 
different reservoirs having completion, i.e. perforated 
casing and open hole in the same well. The number of 
such wells is limited over the field and their influence on 
field-scale results was proven to have no impact. 
 
The tables below summarize the average value of oil cut 
per layer and per block in the year 2009. This 
information allows choosing selective stimulation jobs 
that will limit water recycling and yield the best increase 
in oil production. Stimulation must be avoided in low oil-
cut layers. High oil-cut layers must be stimulated 
selectively and water injection adjusted to support and 
increase the overall oil production.  

 

 

Figure 3. Estimated oil-cut per layer and per block prior to the 2010 
geology review. 

 

Figure 4. Estimated oil-cut per layer and per block after the 2010 geology 
review. 

 
Layer-selective production pilot plan 
 
The pilot will provide a first estimate of layer contribution 
and possible improvement in terms of oil production. 
Data is gathered by stimulating specific layers in some 
wells – producers and injectors – and monitoring effects 
in production. In order to optimize production gains 
during the pilot phase, highest-potential layers are first 
identified to conduct the pilot. The goal is to identify and 
stimulate these layers. 
The different actions are linked to responses, in order to 
refine the Production Simulator. Individual actions are 
changes in flow rate of individually selected layers in 
producers and injectors. This is achieved through acid 
stimulation and flow control in selective injection wells. 
Responses are identified as change in fluid flow – 
interaction between wells – and oil vs. water distribution 
(Oil Cut).  
 
For high-selectivity jobs, targeted layers are those layers 
with the best oil incremental production potential. They 
are chosen according to the remaining oil-cut estimation. 
Only the targeted layers are stimulated. Each targeted 
layer is stimulated individually wherever possible. When 
the perforation intervals overlap with a non-targeted 
layer, the set of perforations is discarded if other 
intervals have been selected and feasible. In any case, 
an RPM (Relative Permeability Modifier) can be used to 
chemically target and block intervals with the least oil 
saturation. 
 
For low-selectivity jobs, wells are chosen based on an 
overall need for stimulation. All layers are targeted. 
However, the job will aim at being as selective as 
possible. Each set of perforations is  separated using a 
packer in the stimulation string. For each stimulation 
interval, an acid job is performed, followed by an RPM to 
block water zones. 
Overall stimulation campaign results are pictured in 
Figure 5. 
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Figure 5. San Francisco field: Effect of well stimulation campaigns 
(started in November 2009) 

More specifically, the following results were observed for 
non-selective jobs performed in previous years (1990-
2007): 
 

• Liquid production increase (expected result of 
any stimulation); 

• Increase of oil production (in many cases 
marginal); 

• Increase of water-cut (undesirable result). 
 
The pilot aim, on the other hand, was to increase 
production without increasing the water-cut. The idea 
was rather to identify a methodology to favor production 
with affecting the WOR, possibly even decrease the 
water-cut, something completely different when 
compared to previous stimulation campaigns. Figure 5 
shows the effect of our stimulation campaign on oil 
production rate. The increase in production versus the 
optimized forecast (green line) seen in November of 
2009 and in May of 2010 correspond to the first two 
stimulation campaigns. The increase in production in 
October 2010 corresponds to the pilot selective 
stimulation campaign. 
 
For each job the type or results that are expected can be 
summarized as: 
 

• Increase of liquid production (expected result of 
any stimulation); 

• Increase in oil production; 
• Stable or decreasing water cut. 
 

The first part of the study was beneficial in both oil 
production increase and data collection. The cumulative 
oil production increase after performing jobs was above 
200 bopd. There was no reduction in oil production and 
no drastic increase of water cut observed even when 
liquid production increased. 

 
Demonstrating the reliability of the San Francisco 
Production Simulator 
 

After this successful pilot phase, the next phase was to 
refine the Production Simulator, as described in a 
previous SPE paper for the San Francisco field (ref. 2). 
This breakthrough field simulator relies on recent results 
of the statistical learning theory (ref. 4). Such new 
approach requires both (i) adjusting the model 
complexity (as defined by its Vapnik-Chervonenkis (VC) 
dimension h) to the number of available past production 
and field data, and (ii) constraining the choice of the 
model by the laws of the reservoir and well physics. This 
leads to an impressive forecasting accuracy, which could 
be demonstrated by two severe “blind tests”, as 
described below. 

 
A two year data set has been available to compare 
actual production with forecasted production.  
The first year data (first blind test) shows a very good 
match between the forecast and the real data (more than 
99% average accuracy). The figure below presents a 
graphical comparison between real and forecasted oil 
production. 

 

Figure 6. San Francisco FOROIL model forecast compared with 2-year 
real production (past production in dark red; base line in 

orange; forecast in green after first optimization and red after 
sand-selective optimization; real production in green dots) 

In order to better understand and fine tune the 
Production Simulator and to take into account selective 
jobs, a second blind test has been carried out for the 
latest 10-month production data, period during which 
these jobs have been carried out. Model forecasts have 
been run from November 2009 to August 2010 without 
any input from real production data. Real water injection 
rates of injectors and measured bottom hole flowing 
pressures of producers have been taken as input data. 
This model was then established with only production 
data prior to November 2009. The learning period for this 
last run did not cover any 2010 stimulation job or pilot 
result.  
 



SPE WVS017  5 

 
Figure 7. San Francisco blind test monthly oil production rates (green 

area: real  past production data; blue line: forecast data)  

The model forecast has been compared with the field 
measured data. The 10-month cumulative oil production 
forecast is 97% accurate for real monthly production, in 
average.

 
Figure 8. San Francisco blind test monthly oil production rates 

comparison with real production (green area: real production 
data; blue line: forecasted data) 

 

Figure 9. San Francisco blind test well by well real oil production 
compared to oil production forecast (red line is the 100% 

match between forecast and real production) 

Figure 9 (above) plots each San Francisco producing 
well according to its effective cumulative oil production 
(horizontal axis) over the November 2009 - August 2010 
period vs. its forecasted cumulative oil production 
(vertical axis). When the production forecast exactly 
matches real production, the well is located along the 
red line (y=x). The main information this figure displays 
is:  
 

• The well diamond cloud is spread along the 
100% match red line, 

• Well diamonds located at either side of the line 
represent a difference in oil rate and cumulative 
volume to the modeled.  

 
Figure 10 is the same plot as Figure 9 with the addition 
of two lines representing plus and minus 15% in the oil 
production forecast. Wells located with red diamonds are 
those that have benefited from production stimulation 
jobs that were not embarked in the field model. The main 
information this figure displays is: 
 

• Oil production forecast does not deteriorates 
with higher oil production wells, 

• The location of the red diamonds indicates that 
the overall effect of the stimulation campaign 
was beneficial in terms of oil production versus 
de modeled. 

• Location of the remaining blue diamonds shows 
better accuracy of the model for the wells with 
no unexpected job. 

 

Figure 10. San Francisco blind test well by well real oil production 
compared to oil production forecast (red line is the 100% 

match between forecast and real productions; bleu lines are + 
and – 15% match; red diamonds locate wells that have been 

stimulated during the blind test period)  
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Massive Optimization Process for boosting overall 
injection 
 
As the reliability of the Production Simulator is fully 
demonstrated and the running time for a single five-year 
forecast is very small (less than one second), an 
Optimization Engine that selects and play 100,000s 
scenarios will show a very good capacity to converge to 
an optimum scenario.  
 
As an example, Figure 11 shows the maximization 
history of the Cumulative oil production as the number of 
iterations increased. The computation is wisely 
parallelized so that several scenarios are tested per 
iteration. In the run displayed in Figure 11, 20 scenarios 
are tested per iteration of the main loop, so that over 
1,700,000 scenarios have been defined, forecast and 
compared to each other in this optimization run. Of 
course, good alternative scenarios could exist, but they 
could not outperform the optimum scenario achieved. 
 
Fundamentally, the Optimization Engine is designed to 
extensively explore the space of production scenarios, 
under operator technical and financial constraints. Of 
course, there is some granularity in the process of 
selecting the scenarios to be played, but a very good 
scenario could not be missed, as it cannot escape the 
screening mechanism (heuristic, deterministic and non-
deterministic) of the Optimization Engine.  

 

Figure 11. Convergence of the Optimization Engine™ as a function of the 
iteration number.  

 
Impressive forecasted increases in production have 
been identified through this massive optimization 
method. This will be presented in a further paper, 
together with actual production results. 
 
Conclusion 
 
With over 15 years of water injection, recent ILTs were 
proof that several sands had not experienced good 
waterflooding, mainly due to their less favorable 
petrophysical properties. A methodology to identify 
remaining saturations per sand, as well as a massively 

optimized design for injection patterns, has shown 
reliability and actual production increase field-wide. 
Historical decline of the San Francisco field was 
between 14-17%. For the years 2009-2011, decline has 
remained steady at 8.5%, a value previously unseen. 
Additional reserves are already evaluated at 0.6 MMbo 
as of 2011, only from adjustments to injectors and 
producers. 
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